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Abstract. Self-avoiding walks and polygons on four non-Euclidean lattices are studied by the

method of series expansions. It appears that the polygons and walks have different critical
points from each other, and that both are in a different universality class to their Cartesian
lattice counterparts. An exact solution is given for one lattice.

1. Introduction

It is well known that the spatial dimension of a physical system and the symmetries of the
interactions are primary determinants of the critical behaviour of physical systems. Another
characteristic that has been investigated for Ising systems [1] is the effect of the curvature
of the space in which the system is embedded. In this paper we study the self-avoiding
walk (SAW) problem in the Poincardisk, which is a space of uniform negative curvature.

In [1], two different lattices were studied, and for a detailed description of the lattices, their
geodesics and symmetry groups, the reader is referred to the cited article. We have studied
the SAW problem on the same lattices, as well as on two additional lattices. On one of
these an exact solution is obtained.

The SAW problem has been extensively studied for many years by various methods
[2,3,5-10]. Although it still remains unsolved in a mathematically rigorous fashion, there
are some methods which yield significant and important results, a number of which are
believed to be exact. Two numerical methods, exact enumeration and Monte Carlo are the
most common methods to study these problems. The Monte Carlo method is based on a
random sample of long SAW (3010’ steps) generated on a computer, and appropriately
averaged. In the exact enumeration method, all SAW up to a certain lersgthenumerated
and later a variety of methods of series analysis such as the ratio method, the method of
Padce approximants or the method of differential approximants are used to determine the
asymptotic behaviour of the SAW generating function. Such approximations are based on
both known properties of SAW and conjectures about SAW, which we now briefly review.

Let ¢, denote the total number of step SAW,u, the total number of self-avoiding
returns (SAR) ang, the total number of self-avoiding polygons (SAP), on a given lattice.
Since the SAR are just oriented, rooted polygons, we have

Up

= . 1.1
pn=5 1.1
On regular lattices, the asymptotic form for langés believed to be given by

cp ~ Aplyn® (1.2)

1 E-mail address: tonyg@mundoe.maths.mu.oz.au
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for SAW, andg is often denoted — 1, and
Uy ~ By,’;n_h (1.3)
for SAR whereh is often denoted 2 af.
Here f(n) ~ g(n) means thatf is asymptotic tog asn — oo; i.e.
jim )
n—00 g(n)
For regular and Euclidean lattices

1. (1.4)

Pw = tp = (1.5)
whereu is a constant associated with each lattice, known as the connective constant. The
connective constant is not a universal constant, but depends on the underlying lattice. For
the hexagonal lattice it is believed [18] that= (2+ \/ZZ))%. The existence of. was first
proved rigorously by Hammersley and Morton [12], who later presented further rigorous
results concerning SAW and SAP in [13-17].

Numerical estimates of and 2 show their independence of the lattice structure in a
given dimension. This lack of dependence is a manifestatiomnofersality and models
with the same exponents are said to be in the sanieersality class The values of and
h are as follows.

In two dimensions :

These two-dimensional results are believed to be exact [18].
In three dimensions numerical estimates are [19, 11]

g =0.161(2) h = 1.763715). (1.7

In dimensions greater than foug, and 2 attain their mean-field values of 0 amkl2
respectively [2]. In four dimensions, mean-field values with logarithmic corrections are
observed [2].

The motivation for the present investigation is to find out which of the above properties
of SAW and SAR apply for some non-Euclidean lattices in the hyperbolic plane. In this
work we enumerate series for SAW and SAR on four different non-Euclidean tessellations
(hyperlattices for short) and attempt to estimate the connective constag well as the
exponents andh.

Two of these lattices (referred to in the following section as {Bg7} and {5, 5}
hyperlattices) were first considered in [20,21] in connection with statistical mechanics,
and later by Rietmamt al [1], where the Ising model was investigated by the method of
series expansions. (We mention in passing that these two lattices were dén@gednd
(5,5) in [1], but we have used the more conventional notafipng}, in which g p-gons
meet at each vertex.)

The possibility of finding some new property which determines the critical behaviour
of the system (such as the curvature of the space in which the system is placed) was the
reason for the interest in this type of lattice. No such characterization has yet been identified.
However, we find the new, and somewhat surprising result that the critical points for the
SAW and SAP generating functions differ. (The analogous result for the Ising model has
not been investigated, as the series for the specific heat of the Ising model—which is the
analogue of the SAP generating function—was too short to be analysed [1]).

1 For loose-packed lattices,, = 0 whenn is odd. For simplicity we write (1.3) with the understanding that it
holds only foru, # 0.
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Figure 1. {3, 7} lattice. Figure 2. {3, 7} lattice with layers.

The third lattice (denoted théb, 3) lattice) was consider by Lundt [23] where the free
energy was evaluated (by solving a dimer problem) for an Ising model on this lattice.
This lattice was constructed as a lattice which is homogeneous under a group other than
translations, on which the dimer problem can be solved. Another viewpoint is that this
lattice is embeddable in thi, 4} hyperbolic lattice. As we show in section 5, the SAW-
and SAP-generating functions are exactly solvable on this lattice.

The fourth lattice, the so-calledl(2, 3, 7) hyperlattice, is an irregular hyperbolic lattice.

2. Description of the hyperlattices

We consider four different hyperlattices. The first two can be characterized by two integers
{p, q}, wheregq is the number of neighbours of each vertex, anid the number of sides of

each face or polygon. The other two are related to the hyperlattices in a manner specified
below. They are all effectively infinite dimensional lattices, in that they cannot be embedded
in R". While sharing this property with Cayley trees, they are more complex than Cayley
trees in that they permit loops.

2.1. {3, 7} hyperlattice

This is a regular hyperlattice, constructed on the hyperbolic plane using triangles with

angles: 7, 7, 7 (see figure 1). We can consider this lattice as a union of shells or layers,

as shown in figure 2.
The number of siteg; on thekth layer can be calculated recursively by
ng = 3np_1 — Ng—2 (2.1)

whereng =7, nqy = 21.
The generating function for the number of sites per layer defined by

P(x) = x_Zanxk (2.2)
k=2

satisfies the algebraic equation
P(x) = 3n1 + 3xP(x) — ng — n1x — P(x)x> (2.3)
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Figure 3. {5, 5} lattice. Figure 4. {5, 5} lattice with layers.

which may be solved to yield

56 — 21x
1—3x+x2
The number of sites on each shell is equal to the appropriate coefficient in the Taylor
expansion:

P(x) = 56+ 147x + 385¢2 4 1008¢3 + 263%* + 6909° + 18 088:° + 47 355’
+12397%® + 324576° 4+ 849 75110 + 2224 67% 1! + 5824 28G:*?
+15248163% + 39920209 + 104512 464 4 273617 18316
+716 339085 + 18754000728 + 4909 861 131*°

Px) = (2.4)

+12 854183 328%° + O(x?Y). (2.5)
The general solution of the recursion (2.1) is
k+1 . k+1
w505

A more detailed description of the construction of this lattice is given in [1].

2.2. {5, 5} hyperlattice

This is a regular hyperlattice, constructed on the hyperbolic plane by pentagons (see figure 3).
We can also consider this lattice as a union of layers, as shown in figure 4.
The number of siteg, on thekth layer can also be calculated recursively [22]:

np = 3ng_1+ng_2 + g3 — Ni_4 (2.7)

whereng =5, n1 = 20, n, = 70, n3 = 245.
The generating function defined by

P(x) = x_4anxk (2.8)
k=4

satisfies the algebraic equation

860+ 435¢ + 665¢2 — 245¢3
1—3x —x2—3x34x4

P(x) = (2.9)
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Henceny ~ a* wherea = ¥#1%% andp = /21. The number of sites on each shell
is equal to the appropriate coefficient in the Taylor expansion:

P(x) = 860+ 3015¢ + 105702 4+ 37 060:® + 129 935* + 455560:° + 1597 225°
+559998G" + 1963391a°% + 68837 825° + 7 241 350 109*°
+846 189 875 + 2966 799 2992 + 10401 800 226"
+36469419 475 + 127 864 266 640 + 448 300 820 766'°
+1571773187 1460 + 5510743 762 630 + 19321042670 685"°
+67 740890515 346° + O(x?Y). (2.10)

A more detailed description of the construction of this lattice is given in [1]

2.3. (6, 3) hyperlattice

This is a regular hyperlattice which consists of hexagons, each one connected to three others
along alternating faces in such a way as to form an infinite tree (see figure 5). It is also
a lattice embeddable in thé, 4} hyperbolic lattice. We can also consider this lattice as a
union of layers as demonstrated in figure 6.

It is easy to find the number of sites on each layeg: = 1, ny = 2, n3 = 2 * 4,
Na=2x4,n5=2x4,ng=2x22n7=2x4%2 ng=2x4% ng=2x 43 nyo=2x 45,
.... The construction of this lattice has been described in more detail by Lundt [23].

N\ /\ I\ I\ I\ \ / JIR—E) |
NV VNV TV N N Y VN T
N N 1
k=5\_ /9 21 2;/ 23 2/ 25 2Z
k=4 \11 12 13 14 15 16 17 18
k=3 3 4 5 6 7 8 9 10
k=2
k=1
1

Figure 6. (6, 3) lattice with layers.
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Figure 7. T(2,3,7) lattice.

2.4. T2, 3, 7) hyperlattice

This is an irregular hyperlattice constructed on the hyperbolic plane using triangles with
angles:7, 3, 7 (see figure 7). It can also be viewed as a triangulation of the re¢8ildj
hyperlattice, in which each octagon is triangulated by 16 triangles, with a common vertex

at the centre of the octagon. The construction of this lattice is described in [24].

3. Enumeration methods

To enumerate SAW and SAR on hyperlattices, the back-tracking method was used (similar
to that discussed by Grassberger [25]). We encountered the usual enumeration problems
associated with problems of exponential complexity. First, the numbers involved get large
very quickly (in fact exponentially), so that the time needed for the enumeration of these
numbers grows exponentially as well. Secondly, for direct enumeration on such lattices,
memory is also a problem. When moving from layer to layer the number of sites which
have to be stored also increases exponentially.

To illustrate these difficulties, consider tH8, 7} lattice. If we want to produce a
nearest-neighbour look-up table for SAW of lengths 18 steps, we need a table which contains
169104 712 sites (each site has seven neighbours). This number is even biggef3obthe
lattice. To avoid this problem we tried two methods.

In the first method, instead of producing a look-up table we found nearest-neighbours
as needed. First, we observed that we have only two types of connections between layers
for a {3, 7} lattice, and four types for &, 5} lattice as shown in figures 8 and 9, and later
we observed a pattern which allows us to construct these two lattices.

Figure 8. There are two types of connections between layers of3h# lattice.
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Figure 9. There are four types of connections between layers or{3hg} lattice.

For the {3, 7} lattice the following rule was used. On each layer we chose a local
origin. The local origin on thé&th layer O (k) is a site connected to the local origin of the
previous layerO (k — 1) in such way that its left-hand neighbour on the same layer is not
connected with the local origin on thé — 1)th layer. We assign labels to each site on the
kth layer starting from the local origi® (k) with 1, and increasing in a clockwise manner
incrementing by one at each step (see figure I)1) is any point on the first layer.

Let us denote theth point on thekth layer by(k, n). Hence the two nearest neighbours
of (k, n) on the same layer arg, n — 1) and (k, n + 1) (with appropriate adjustment when
the right-hand neighbour is the local origin).

To find the nearest neighbours on the previous and next layer we notice that starting
from the second layer we have a regular pattern of connections between sites (see figure 10).
Any three consecutive sites on one layer are connected to nine consecutive sites on the next
layer; one site is connected with three sites on the next layer, and two of them with four. We

Figure 10. {3, 7} lattice with labelled vertices. Figure 11. Odd-even walk.
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wrote a computer program to utilize this pattern when moving between layers, and hence
finding nearest neighbours for any given site. The same method was implemented for the
{5, 5} lattice.

The second method, suggested by Oitmaa [22], is based on the odd—even walks. Without
overlapping, the first two steps of the walk both start from the origin in the zeroth layer.
We consider these two steps as the first steps in two different paths. Thereafter, each odd
step is attached to the path formed by the first step, and each even step is attached to the
second path formed by the second step. The paths cannot meet (see figure 11).

The enumeration of all such walks for all possible combinations of the first two steps
gives the total number of all SAW for open walks, and SAR for closed walks. In this way
we significantly reduced the size of the look-up table, as(fan-step walks we need to
remember only the first layers. To produce the look-up table we used a program which
was written by Oitmaa. The total number of sites for layers (0-10) fo{5hB} lattice is
637 341 and 76 615 for th8, 7} lattice. Memory is therefore not a problem for walks up
to about 20 steps.

The second method turns out to be faster than the first, and we were able to enumerate
the number of SAW and SAR up to 17 steps for {Be7} lattice which took almost 800 h
(on a relatively slow IBM RISC 6000/530) and up to 19 steps for {theb} lattice which
took 43 h.

For the(6, 3) lattice we used the first method. It was not necessary to produce the look-
up table as it is not very difficult to find the nearest neighbours using the representation of
the lattice given in figure 6. We were able to enumerate the number of SAW and SAR up
to 23 steps, which took almb§ h of computer time. However, as we subsequently show,
it is possible to solve for this lattice analytically.

We cannot use the even—odd walk method f@2, B, 7) because this hyperlattice is
irregular. Since the number of sites on each layer grows less rapidly than that {& e
or the {5, 5} lattices, we could easily produce the lookup table moving from layer to layer
(the total number of sites (0—16) is equal to 53214). It took almost 16 h to enumerate the
number of SAW and SAR up to 15 steps. All the results are given in table 1.

4. Analysis of series

To analyse the series we used both the method of differential approximants, and variants of
the ratio method. Both methods are described in detail in [4].

4.1. Summary of the method

In the method of differential approximants the functignis represented by th&th order
differential equation

K
Y 0i(@)D'f(z) = P(2) (4.1)
i=0

whereD = z% and Q; and P are polynomials inz of degreeN; and M, respectively.

Qko=1is setto 1, and in the homogeneous c&se) = 0, Qoo = 0, which forces the
point at the origin to be a regular singular point. The symBéJ [Vo; N1; ...; Ng] denotes
the approximant. FolK = 1 the approximant ¥M/Ny; N1] is appropriate to represent
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functions with a single non-analytic singularity

-V
f@) ~ A + BG) (1 = Z) 4.2)

Zi

and for K > 1 functions with more than one singularity,

-V
F(2) ~ A@) + B() (1 _ j)

i

81 Sk-1
X<1+C1(Z) (1— ZZ) + -+ Cx_1(2) (1— ZZ) ) (4.3)

which may be confluent, as shown in (4.3) or non-confluent. Usually the first- and second-
order linear inhomogeneous differential approximants are constructed, with inhomogeneous
polynomials of degree 1-8. This can be done by matching the series coefficienfstto a
order differential equation. For a fixed number of terms, critical point and critical exponent
are estimated. Later, to summarize the data, means of estimates of the critical point and
exponent are taken for a fixed value of the order of the coefficients used in the construction
of the approximants (this order is denoted by For each value ofi there are, sayL
non-defective approximants with an error, which is taken as twice the standard deviation.
Final estimates of the critical point and exponent are obtained by taking all estimates with
an error not bigger thans(minimum error) with a weight which depends on the error. For
example, for the entries for the critical exponept-¢; (i =1, ..., M) estimate ofy can

be found as
M . M 1 -1
= ?(Z 6) (4.4)

i=1 i=1

with an error given by

M 1 -1
(€) =m<z) . (4.5)
e

If the value of the critical point is known, or a good estimate can be found, a biased
approximant can be constructed, forcing the approximant to be singular at the given critical
point.

To calculate the differential approximant we used the Fortran program NEWGRQD.
To analyse the unbiased and biased approximant we used another Fortran program called
TABUL. These programs and their description can be found in [4].

4.2. Results of analysis

4.2.1.{3, 7} lattice.

SAW. Results of the analysis of the SAW-generating function are shown in table 2. As
explained above, each row gives the mean and twice the standard deviation of the the critical
point and critical exponent estimates. Tastimateswere obtained using the procedure
described before (equations (4.4), (4.5)). Combining the first- and second-order differential
approximants gives

% — 0.18101515) ¢ = 0.000(3). (4.6)
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Table 2. SAW on {3, 7} lattice. Summary of critical point and exponent estimates from first-
and second-order differential approximants.

n Critical point Critical exponent L
K=1

8 0.1813466 0.0001290-1.0112081 0.0051242 4

9 0.1811831 0.0001678-1.0057662 0.004 9784 6
10 0.1810169 0.0000584-1.0005457 0.0018296 7
11 0.1810165 0.0000449-1.0002111 0.0009236 10
12 0.1810192 0.0000117#1.0000896 0.0005353 11
13 0.1810214 0.0000035-1.0003190 0.0002065 11
14 0.1810189 0.0000018-1.0002060 0.000 1286 9
15 0.1810170 0.0000070-0.9996348 0.0020328 6
16 0.1810154 0.0000012-0.9999921  0.0000799 5

Estimates 0.1810176 0.00000101.0016252  0.0000698

K=2

13 0.1809847 0.0001158-0.9951051 0.0121457 5
14 0.1810013 0.0000296-0.9979865 0.003 7320 5
15 0.1810157 0.0000200-0.9995591  0.0009748 5
16 0.1810139 0.0000085-0.9996438 0.0010029 8

Estimates 0.1810123 0.00000860.9994120 0.000 7560

Table 3. SAR on {3, 7} lattice. Summary of critical point and exponent estimates from first-
and second-order differential approximants.

n Critical point Critical exponent L
K=1

11 0.2519716 0.0023757 0.4107290 0.0864030 6
12 0.2518882 0.0036432 0.4610302 0.4872579 10
13 0.2513263 .0020893 0.5411557 0.3197514 4
14 0.2511697 0.0014521 0.5352664 0.226 3169 7
15 0.2505312 0.0013681 0.6376466 0.2826303 7
Estimates 0.2512248 0.0008621 0.4884528 0.0882695
K=2

11 0.2451500 0.0063694 1.1447361 0.2517024 x 2
12 0.2553495 0.0001956 0.0530493 0.0161568 x 2
13 0.2511197 0.0062944 0.6054072 0.8647347 5
14 0.2510471 0.0021844 0.5039439 0.4870687 5
15 0.2505469 0.0016094 0.6293797 0.3338532 5

Estimates 0.2508054 0.0013991 0.5834069 0.2791446

SAR. Results of the analysis of the SAR generating function are shown in table 3.
Combining the first- and second-order differential approximants results gives

1 _ 02503, (4.7)
uw
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Table 4. SAW on {5, 5} lattice. Summary of critical point and exponent estimates from first-
and second-order differential approximants.

n Critical point Critical exponent L
K=1

11 0.2515943 0.0000034-1.0000023 0.0000446 10
12 0.2515958 0.0000014-1.0000178 0.0000489 9
13 0.2515952 0.0000022-1.0000804 0.0004344 11
14 0.2515950 0.0000004-1.0000001 0.0000051 10
15 0.2515951 0.000000%0.9999996 0.0000030 8
16 0.2515951  0.0000001-1.0000043 .0000239 7
17 0.2515950  0.00000006-1.0000000 .0000001 5

Estimates 0.2515950 0.00000001.0000000 0.0000001

K=2

13 0.2515931  0.0000030-0.9998584  0.0002672 5
14 0.2515944  0.0000012-0.9999590  0.000 0990 7
15 0.2515950  0.0000026-0.9999489  0.000 2865 7
16 0.2515951  0.0000008-0.9999961  0.000 0407 8
17 0.2515950 0.0000001-0.9999948  0.0000112 7

Estimates 0.2515950 0.00000040.9999951  0.0000124

A ratio analysis allows us to give a similar estimate fgrand in addition the assumption
that u = 4 exactly gives the exponent estimate= 1.50(10). Thus it is clear that on the
{3, 7} lattice SAW and SAR have different connective constants.

4.,2.2.{5, 5} lattice.

SAW. Results of the analysis of the SAW-generating function are shown in table 4. We
estimate that

1
= = 0.25159501) ¢ =0.0. (4.8)
w

SAR. The series was too short to estimate the connective constant and exponent for SAR
on the{5, 5} lattice.

4.2.3. (6, 3) lattice.

SAW. Results of the analysis of the SAW-generating function are shown in table 5.
Combining the first- and second-order differential approximants gives

1
— =0.513842) g = 0.000(2). (4.9
n
SAR. Again, the series is too short to enable us to estimate the connective constant and

exponent for SAR, but in the next section we give the exact solution for this lattice, from
which we see thaf = 0.707 106 .. and/ = 1.5.
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Table 5. SAW on (6, 3) lattice. Summary of critical point and exponent estimates from first-
and second-order differential approximants.

K=1

n Critical point Critical exponent L

12 0.5127440 0.0034333-1.0041410 0.028 3589 4
13 0.5144424 0.0007715-1.0120279 0.0144167 5
14 0.5143630 0.0011776-1.0146700 0.0437898 7
15 0.5141398 0.0008242-1.0084590 0.0289819 5
16 0.5138722  0.0002722-1.0014012 0.006 0802 9
17 0.5138864 0.000057%1.0008782 0.0011437 11
18 0.5138892 0.0001814-1.0012543 0.0067765 13
19 0.5138549 0.0000491-1.0003415 0.0013070 13
20 0.5138411 0.0000164-1.0000248 0.0003386 15
21 0.5138483 0.0000143-1.0001057 0.0007745 8
22 0.5138451 0.0000059-1.0002026 0.0002616 14
23 0.5138415 0.0000036-1.0000612 0.0001551 10
Estimates 0.5138427 0.00000281.0000940 0.0001310
K=2

18 0.5138042 0.0008158-0.9916375 0.0241171 5
19 0.5138877 0.0006843-0.9975011 0.0188578 5
20 0.5137973  0.0000793-0.9978040 0.005 3063 6
21 0.5138324 0.0000942-0.9994792 0.006 0643 4
22 0.5138103 0.000204G6-0.9923375 0.0398659 9
23 0.5138226 0.0000132-0.9984988 0.0021183 8

Estimates 0.5138226 0.00001320.9985360 0.0020984

4.2.4. T2,3,7) lattice.

SAW. Results of the analysis of the SAW-generating function are shown in table 6. We
estimate that

% = 0.19242) ¢ = 0.002). (4.10)

SAR. Although the polygon series was the same length as that for SAW we found that the
series was rather badly behaved. We were unable to make any estimate of the critical point
or exponent by the method of differential approximants. From the ratio method it seems
possible to estimate the critical point agud= 0.2 but with a rather large uncertainty.

5. Exact solutions

For the (6, 3) lattice the number of SAP and SAW can also be evaluated exactly.fiLet
be the generating function for walks on tf® 3) lattice which start a®, move first in the
+x direction and return to the adjacent south-west site.

AT
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Table 6. SAW on T(2, 3, 7) lattice. Summary of critical point and exponent estimates from
first- and second-order differential approximants.

n Critical point Critical exponent L
K=1

8 0.1922625 0.0055139-1.0737759  0.034 5037 5

9 0.1936776  0.0021089-1.1029940 0.1849718 7
10 0.1925311 0.0011313-1.0298179  0.0393297 7
11 0.1926558 0.0005885-1.0320224 0.0436121 10
12 0.1925282  0.0004061-1.0253481 0.0179328 10
13 0.1925410 0.0000918-1.0210954 0.009 3643 9
14 0.1925028 0.0001319-1.0187711 0.0182577 10

Estimates 0.1925253 0.00007661.027 7402  0.008 1200

K=2

10 0.1919073 0.001750%1-0.9851313 0.0238791 x3
11 0.1925378 0.00268570.9511558 0.3598304 4
12 0.1924511 0.00027111.0120410 0.0316081 5
13 0.1925054 0.0005925-1.0052997 0.0553710 6
14 0.1924704 0.0001033-1.0112683 0.0184425 5

Estimates 0.1924651 0.00010581.0104663 0.0166671

There are four possible configurations, as shown in the above figure, and by inspection
one can write down an algebraic equation satisfied by the generating function, namely
fi=x®+x i+ xt i+ 23 fL (5.1)
Hence, taking the negative square-root in the solution of the above quadratic in order to
match the boundary condition that the first termfinis x°, gives

1—2x% — /1 — 4x*
fi= 53
These coefficients are immediately recognizable as Catalan numpeﬁzn—}rl (zn”) n>1

Thus we findu, = 1/+/2 andh = g in agreement with both the exponent found numerically
for SAP on the{3,7} lattice, and the exact value found on regular lattices!

The generating function for SAW can also be obtained with somewhat greater difficulty.
Let w be the generating function for walks on tt& 3) lattice which start a®, move first
in the +x direction, and do not end on an adjacent site. There are nine such distinct
configurations possible, as shown in the figure below:

w =1+ + .—\/‘)f-'- /3 + > + )
By inspection, we can write the algebraic equation for the generating function as follows:
w=14+xw+x%w+ xf1 + x>w +x3f1—|—x2f12

=20+ 2%+ 5B 14T AP 13 . (5.2)
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+x*w + x? frw + x° frw. (5.3)

Then the generating function for the total number of walks is obtained by construction from
this generating function and the polygon-generating function obtained above, and is given
by:

2w+ f1) —1+xQw—-1) =2w@d — f1 +x) —1—x. (5.4)
The generating function for SAW (x) can be written in the form
A(x) 4+ B(x)v/1 — 4x*4
Cx) = = (5:5)
x°D(x)

where
AX)=1—x —x%—6x*+ 2x° =3x8 4+ 5x8 — 3% — X0 211 _ 2412
B(x) = =1+ x 4+ x> 4+ 4x* + 248 — 2«8
D(x) = =14 x 4+ x>+ 4x* + 2x°.

The polynomialD(x) has one real zero at= 0.513839 377 437 877403 29, which agrees
with our numerical result, and verifies that= 0, corresponding to a simple pole. These
results also show explicitly that the connective constant for walks is different to that
for polygons. Comparing (5.2) with (5.5), one sees that the singularity comes from the
numerator in (5.2) and from the denominator in (5.5).

6. Conclusion

For all four lattices the series for SAW were found to behave in the manner conjectured
by equation (1.2), with exponergt= 0. This is the same as the exponent for SAW on a
Bethe lattice, and for the susceptibility of the Ising model on these lattices. It reflects the
infinite-dimensional nature of the lattices. For the polygon series we were able to accurately
estimate the connective constant on {Bg7} lattice only, and we found that:

M F Wp- (6.1)

This inequality was confirmed for thg, 3) lattice.

An anonymous referee has pointed out that the argument due to Hammersley (for a most
accessible account, see [3]) for the existence of a critical point for SAW immediately extends
to lattices of the type considered here. Hammersley subsequently proves the existence of
the corresponding limit for SAP, and, further, shows that the two limits are equal. The
referee raises the question as to why the Hammersley construction fails in the present case.
Hammersley’s proof involves concatenation of polygons, and bond deletions. This concept
needs to be generalized to lattices in the hyperbolic plane. This would appear to be possible
(though we have not done so), which would then allow the existence of the connective
constant for SAP to be established. However, the proof of equality breaks down in two
ways. First, the construction of polygons from four distinct walks makes use of symmetry
properties of the Euclidean plane, which do not apply to the lattices under consideration, and
secondly, the vital ‘unfolding’ transformation, whereby a class of unfolded SAW possesses
the same connective constant as the class of SAW from which it was generated, also fails
to hold.

Our results for &3, 7} and {5, 5} lattice are consistent with the results found in [1] for
the Ising model where for thg3, 7} lattice the critical point was found to be 0.1848 with
exponentg = 0.0, and for the(5, 5} lattice the critical point was found to be 0.2520 again
with exponentg = 0.0. (The Ising model study did not give estimates of the specific-heat
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critical point, which is the analogue of our SAP critical point.) Our values of the reciprocal
of the connective constants are lower then the values of critical points obtained for the Ising
model on the same lattice, which is not surprising. For the square lattice Ising model, the
critical point is equal to 0.4142., and the reciprocal of the connective constant obtained
for SAW is equal to 0.37905. [26].

It is interesting that, for both the SAW and the Ising model susceptibility, the generating
function has a simple pole singularity at the critical point for these lattices. This suggests
that the solution may be simpler for such lattices than for regular Euclidean lattices, a result
confirmed by the exact solution given for ti@ 3) lattice. However, that lattice has a tree-
like dual structure, which accounts for the solvability of models on that particular lattice.
The other lattices studied are less simply connected, and thus any exact solutions are likely
to be more elusive.
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